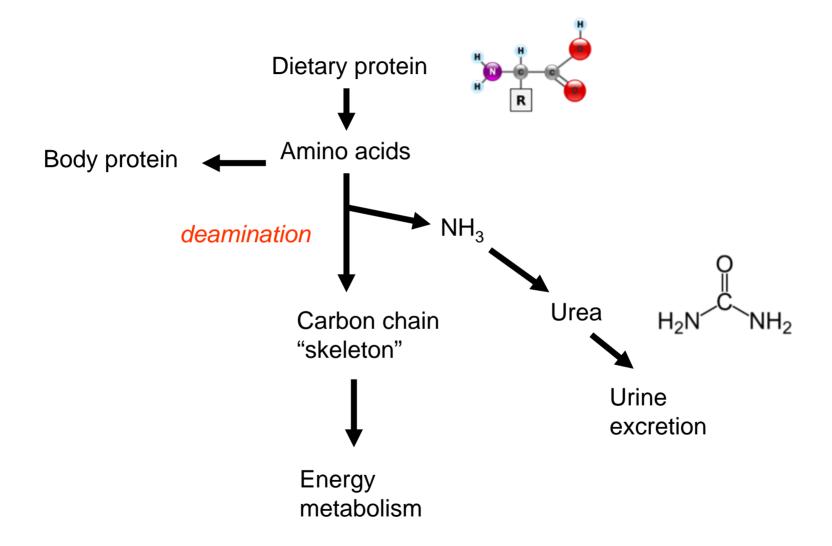
Toxicity and exposures associated with air emissions from concentrated animal feedlot operations

Robert Thiboldeaux
WI Bureau Environmental and Occupational Health
Ag waste Air Emissions Advisory Group
June 8, 2010

Topics

- For NH₄ and H₂S:
 - Sources
 - Mechanism of effect
 - Range of toxic concentrations
 - Health standards and guidelines

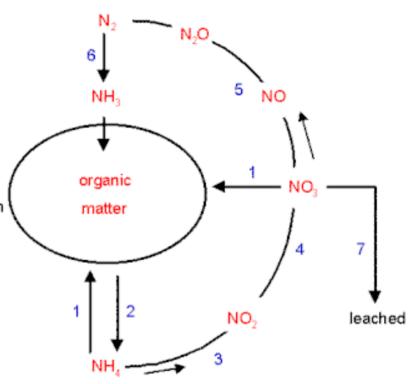
Chemicals Found in Manure

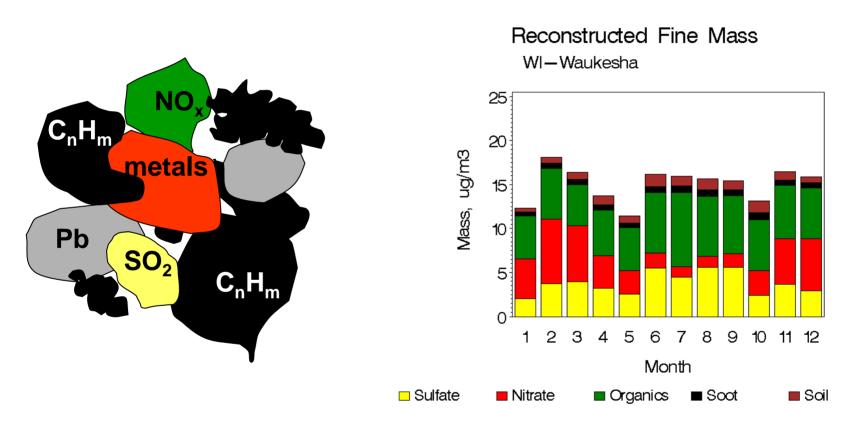

- Hydrogen Sulfide
- Methane
- Nitrogen Heterocycles
- Mercaptans
 - Methyl, Ethyl, Propyl
- Volatile Fatty Acids,
 Alcohols, & Aldehydes
 - Proprionic, Butyric,
 Isovaleric, Isobutyric

- Ammonia
- Amines
 - Methyl, Ethyl, Dimethyl
- Carbon Dioxide
- Phenolics
- Sulfides
 - Dimethyl, Diethyl

Ammonia

- Ammonia= moderate base in water solution
 - Infinite water solubility
 - Biological solvent
 - OSHA: TWA 50 ppm, IDLH 300 ppm


Deamination and ammonia waste


⁻Implications of non-linear increase in manure NH3 w/ incr. feed protein content (swine).

Environmental fate of ammonia

- 1. Uptake of NH4 or NO3 by organisms
- Release of NH, by decomposition
- 3,4. Microbial oxidation of NH₄ (yields energy in aerobic conditions)
- Denitrification (NO₃ respiration) by microbes in anaerobic conditions (NO₃ is used instead of O₂ as the terminal electron acceptor during decomposition of organic matter)
- 6. Nitrogen fixation
- Nitrate leaching from soil

Ag Ammonia contributes to regional air quality?

See also: Harper and Flesch. Wintertime Ammonia Emissions from Dairy Production Systems. Technical quarterly report to the USDA-ARS, Specific Cooperative Agreement Project Numbers 13655-12630-001-02S and 258-3655-6-F157, March 31, 2007.

NH₃ toxicity progression compiled by Michigan Dept Env. Quality. 2006. CAFO chemicals associated with air emissions

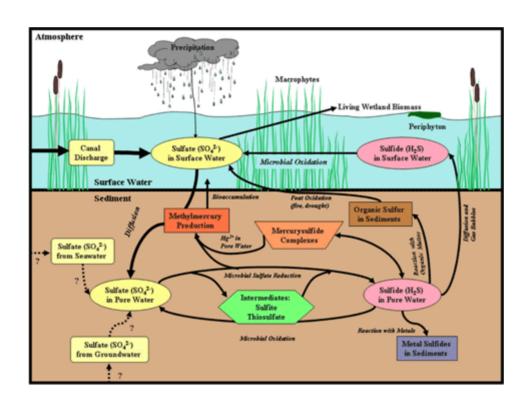
property	Concentration in air ppm		
Detectable odor	0.04-53		
Eye, nose irritation	50-100		
Strong cough	50-100		
Airway dysfunction	150		
Lethal in 30 minutes	2500-4500		
Immediately lethal	5000-10,000		

Minot ND Ammonia accident January 2002

Particulate bioaerosols

- Unspecified animal proteins/allergens
- Endotoxin
 - LPS component of cell wall of gram(-) bact.
 - e.g. *E.coli*
 - Worker exposure
 - Gradual decline in lung function
 - ODTS organic dust toxic syndrome-
 - immune dysfunction following excessive dust exposure.
 - Possible synergy with ammonia exposure

H₂S Properties and Sources


- Colorless; "rotten egg" odor
- Natural sources
 - Geo venting: volcanoes, springs, crude petroleum
 - Microbial: stagnant (anaerobic) aquatic systems
- Industrial
 - High BOD waste: Pulp mills, sugar processing.
 - Petrol refining
 - Landfill demolition waste
 - Microbial sulfate reduction
 - gypsum breakdown (CaSO4•2(H2O) : H₂S = 4:1 wt:wt)

H₂S: Synonyms

- Acide sulfhydrique [French]
- Acide sulphhydrique
- Dihydrogen monosulfide
- Dihydrogen sulfide
- EINECS 231-977-3
- FEMA No. 3779
- HSDB 576
- Hydrogen sulfide
- Hydrogen sulfide (ACGIH:OSHA)
- Hydrogen sulfide (H2S)
- Hydrogen sulfure [French]
- Hydrogen sulfuric acid

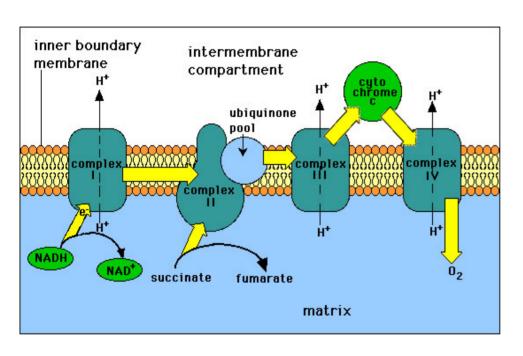
- Hydrogen sulphide
- Hydrogene sulfure [French]
 Hydrogene sulphure
- Hydrosulfuric acid
- Idrogeno solforato [Italian]
- RCRA waste number U135
- Schwefelwasserstoff [German]
- Sewer gas
- Siarkowodor [Polish]
- Stink DAMP
- Sulfur hydride
- Sulfureted hydrogen
- Zwavelwaterstof [Dutch]

H₂S: Enteric/Environmental sources

 $2 \text{ CH}_2\text{O} \text{ (organic carbon)} + \text{SO}_4^{2-} \text{ (sulfate)} \longrightarrow \text{H}_2\text{S} \text{ (sulfide)} + 2 \text{HCO}_3^{-} \text{ (inorganic carbon)}.$

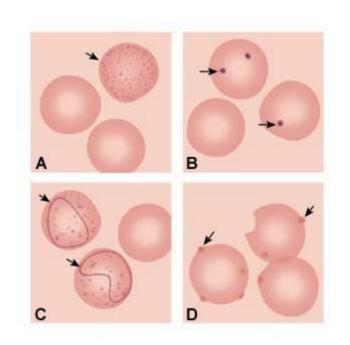
Ref: USGS

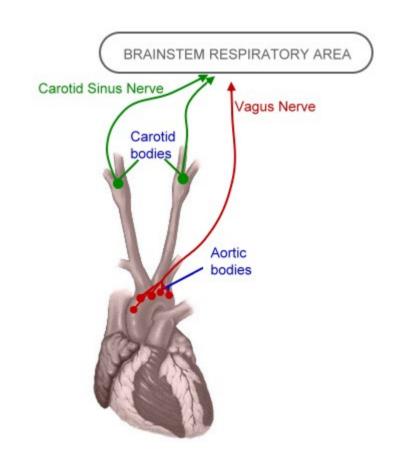
H₂S Lethal Accidents


- Stagnant, anaerobic sewage may contain 6000 ppm H₂S.
 - Max solubility in water 4000 ppm
- H₂S gas is heavier than air. When agitated, increase production and erupt from solution with pressure to fill confined space.

H₂S Toxicity Progression

- Acute, very high conc.
 - Actual conc. in accidents usually unknown
 - >600-1000 ppm ?: Lung paralysis, collapse, death
- Acute, high conc. >500 ppm, <1 hr
 - CNS depression, loss of consciousness
 - Recovery; neurological problems may persist
- Acute, lower concentrations
 - 2 ppm: asthmatics affected
 - 150 ppm: olfactory paralysis
- Chronic exposure
 - 0.0002 ppm typical background level
 - 0.3 ppm offensive odor, headache
 - 3-5 ppm very offensive
 - 0.001-0.008 ppb odor threshold (AI HA 1989)
 - Human flatus: 3-18ppm normal


Mechanics of H₂S toxicity


Mechanics of H₂S toxicity (2)

- Soft nucleophile
- Targets cytochrome oxidase (binds to iron of heme-containing protein in complex IV)
- Inhibitor of electron transport
- Impairs mitochondrial ATP synthesis

Mechanics of H₂S toxicity (3)

- -Casarett & Doull's Toxicology
- -Irwin and Kirchner Am Fam Physician. 2001 Oct 15;64(8):1379-1387.
- -elrinajoubert-huebner.online

Occupational standards for H₂S

- OSHA permissible exposure limit:
 - 20 ppm (10 minute ceiling limit)
- NIOSH recommended exposure limit:
 - 10 ppm (10 minute ceiling limit)
- 8-hour limit not available

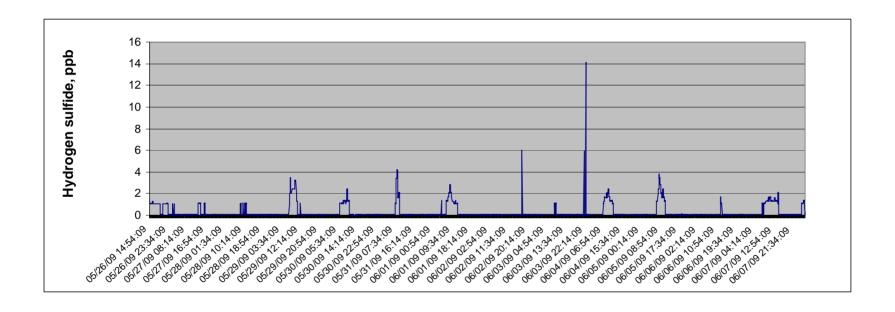
EPA IRIS Summary of H₂S

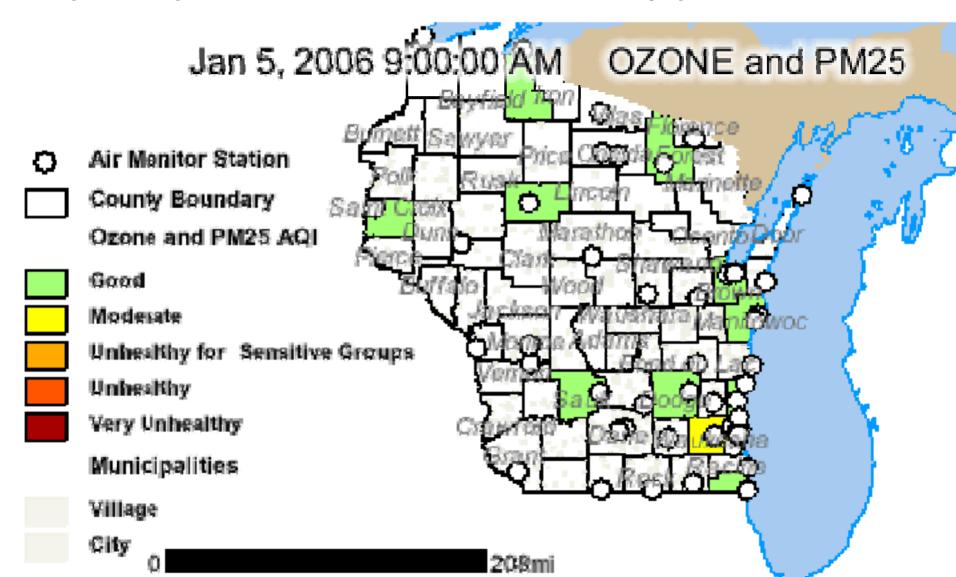
Critical Effect	Experimental Doses (Inhalation)	UF	RfC
Nasal lesions of the olfactory mucosa	NOAEL: 13.9 mg/m³ (10 ppm) NOAEL (ADJ): 3.48 mg/m³		
Rat Subchronic Inhalation Study	NOAEL (HEC): 0.64 mg/m3 (0.46 ppm)	300	2 ⁻³ mg/m ³ (0.0014 ppm)
Brenneman <i>et al.,</i> 2000. Toxicol. Pathol. 28: 326-333.	LOAEL: 41.7 mg/m3 (30 ppm) LOAEL (ADJ): 10.4 mg/m ³		

NR 445 annual std 100ug/m3 (71 ppb)

Endogenous role for H₂S?

- Numerous cellular roles for sulfhydryl molecules.
 - Cysteine (protein crosslinking; enzyme active sites)
 - Glutathione (conjugation and antioxidant detox)
- Evidence of interaction with brain NMDA receptor- may account for neurotoxicity.
- H₂S possible neuromodulator.
 - Whiteman et al. 2005. BBRC, 326:794-798
 - H₂S in brain normally 50-160 μ M.
 - H₂S lower in Alzheimer brain; corresponding increase in hypochlorous acid.
 - H₂S inhibits hypochlorous production in brain.
- In rats, H₂S modulates physiological inflammation and contributes to the resolution of colitis. -Wallace et al. 2009. Gastroenterol. 137: 2181-2.




Figure 2. Hydrogen sulfide concentration in air 1950 feet downwind of the AV Roth Feeder Pig farm versus date and time, measured over two monitoring intervals. A: First monitoring period = May 26-June 9 2009; B: Second monitoring period = June 18-July 1, 2009. ppb: parts per billion.

Summary

- Ammonia toxicity based upon caustic properties.
- Ammonia in manure product of livestock metabolism, followed by nonenzymatic NH4 release in water, or microbial breakdown of urea.
- Hydrogen sulfide produced by microbial metabolism.
- Sulfide toxicity based upon nucleophilic, cyanide-like properties.
- Sulfide toxicology complicated by endogenous role.

WDNR Statewide Air Monitoring

http://maps.dnr.state.wi.us/imf/dnrimf.jsp?site=wisards

